Series expansion analysis of corrections to scaling in the three-state Potts model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 15 L417
(http://iopscience.iop.org/0305-4470/15/8/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:03

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Series expansion analysis of corrections to scaling in the three-state Potts model

Joan Adler and Vladimir Privman
Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel

Received 22 April 1982

Abstract

Several extant series for the $d=2, q=3$ Potts model are analysed with a method suggested recently that explicitly accounts for the effect of confluent corrections to scaling. Excellent agreement with the conjectured exponents for this model is found, as well as confirmation of renormalisation group estimates of the sub-leading eigenvalue.

The three-state ($q=3$) Potts model (for a review, see Wu 1982) with Hamiltonian

$$
-\beta \mathscr{H}=K \sum_{\langle i j\rangle} \delta_{S_{i} S_{i}}
$$

where i and j are neighbouring sites with variables S_{i} and S_{j} which can each take one of three values, is known (Baxter 1973, Baxter et al 1978) to have a continuous (second-order) phase transition at $d=2$. The critical exponents are not known exactly, but plausible conjectures for the thermal eigenvalue $y_{\mathrm{T}}^{(\underline{q}=3)}=\frac{6}{5}$ (den Nij 1979) and the magnetic eigenvalue $y_{\mathrm{H}}^{(\mathrm{q}=3)}=\frac{28}{15}$ (Nienhuis et al 1980, Pearson 1980a) of the $d=2$ Potts model lead to exponent predictions. For the exponents of the specific heat C_{v} $\left(\sim\left|T-T_{\mathrm{c}}\right|^{-\alpha}\right)$, magnetisation $M\left(\sim\left|T-T_{\mathrm{c}}\right|^{\beta}\right)$ and susceptibility $\chi\left(\sim\left|T-T_{\mathrm{c}}\right|^{-\gamma}\right)$ these are $\alpha=2-d / y_{\mathrm{T}}=\frac{1}{3}, \beta=\left(d-y_{\mathrm{H}}\right) / y_{\mathrm{T}}=\frac{1}{9}$ and $\gamma=\left(2 y_{\mathrm{H}}-d\right) / y_{\mathrm{T}}=\frac{13}{9}$, respectively.

Confirmation of these conjectures from the results of numerical calculations is, in general, tolerable but not outstanding. In particular, the β estimates listed by Wu (1982) all fall below 0.109 . The 'best' (closest to the conjectured) results for α are from the Kadanoff variational renormalisation group (RG) calculations ($\alpha=0.3365$ (Burkhardt et al 1976) and $\alpha=0.326$ (Dasgupta 1977)), and from some Hamiltonian series for the Z_{3} model ($\alpha=0.320 \pm 0.004$ (Elitzur et al 1979)). The usual (partition function) series results for α are either very bad (Zwanzig and Ramshaw 1977) or exhibit slow convergence (Enting 1980).

Recently, there has been considerable interest in series analysis methods which explicitly account for the influence of the leading confluent singularities on critical exponent estimates. Much attention has been paid to the $d=3$ Ising (or $q=2$ Potts) model, where correct treatment of the leading non-analytic confluent term has been shown to remove discrepancies between series and RG results (Roskies 1981, ZinnJustin 1981, Chen et al 1982, Adler et al 1982b, and references therein).

If we consider a (q, d) plane of Potts models (figure 1) with q values on the abscissa and d values on the ordinate we may look along the line of fixed $q=2$ (Ising model) and varying d, and observe that the next to leading eigenvalue, which is marginal at $d=4$ (causing logarithmic corrections, Wegner 1972), governs the non-analytic

Figure 1. The (q, d) plane of Potts models. L indicates leading logarithmic corrections to scaling, NAC indicates leading non-analytic power law confluent corrections and AC indicates leading analytic confluent corrections. References for $d=2$ and all $q=2$ are in the text, and the $q=1$ results are quoted from Houghton et al (1978), Aharony (1980), and Adler et al (1982c).
confluent corrections to scaling at $d=3$ (Wegner 1972). In the $d=2$ Ising model the leading correction to scaling term is analytic and is attributed to nonlinear scaling fields (Aharony and Fisher 1980).

A similar picture arises if we look along the line of fixed $d=2$. The $q=4$ Potts model (for which agreement between the y_{T} and y_{H} conjectures and the results of numerical calculation is even worse than for $q=3$ (Wu 1982)) has logarithmic corrections at $d=2$ caused by the marginality of the next to leading eigenvalue y^{\prime} (Nauenberg and Scalapino 1980, Rebbi and Swendsen 1980). These explain the slow convergence of both Monte Carlo Rg and series work for this model. At $q=3$ this next to leading eigenvalue causes non-analytic corrections to scaling and the critical behaviour is of the form (considering C_{v} as an example)

$$
\begin{equation*}
C_{\mathrm{v}} \sim \text { constant }\left|T-T_{\mathrm{c}}\right|^{-\alpha}\left(1+a_{\mathrm{c}}\left|T-T_{\mathrm{c}}\right|^{\Delta_{1}}+b_{\mathrm{c}}\left|T-T_{\mathrm{c}}\right|+\ldots\right) \tag{1}
\end{equation*}
$$

where a_{c} is the coefficient of the non-analytic correction to scaling ($\Delta_{1}=y^{\prime} / y_{\mathrm{T}}$ is universal (Wegner 1972)) and b_{c} is the coefficient of the first analytic term which is always present. The case of $q=2$ (Ising model) was mentioned above and in the case $q=1$ (bond percolation) non-analytic corrections to scaling are again present ($\Delta_{1}>1$, Adler et al 1982a, and references therein). Here again proper treatment of these corrections removes discrepancies between conjectures and series results and thus it seems reasonable to expect that series for the $q=3$ Potts model should be analysed with the assumed critical behaviour of the type of equation (1). (We note that logarithmic corrections should not occur for any $q \neq 4$ at $d=2$ (Adler and Privman 1981).)

Various methods of evaluating Δ_{1} from series expansions have been developed (see the references listed above for the $d=3$ Ising model). In the present letter, we shall apply the method introduced by Adler et al (1982a) to several series for the $q=3$ Potts model, and shall show that improved exponent estimates are obtained, as well as results for y^{\prime} that are in agreement with the RG predictions.

We restrict our attention to the case of the square lattice (where T_{c} is exactly known from duality arguments (Potts 1952, Hintermann et al 1978)). We consider the low-temperature series of Enting $(1980,1982)$ for the magnetisation

$$
M=1-\sum_{k=4}^{35} b_{k} u^{k}+\mathrm{O}\left(u^{36}\right)
$$

and the partition function

$$
Z=1+\sum_{k=4}^{35} a_{k} u^{k}+\mathrm{O}\left(u^{36}\right)
$$

where $u \equiv e^{-K}$ and $u_{c}=(\sqrt{3}-1) / 2$. The second series is transformed to a series for $E_{\mathrm{s}}=(1-1 / \sqrt{3})-u(\mathrm{~d} \ln Z / \mathrm{d} u)$, where E_{s} has exponent $1-\alpha$. We also consider the 'quantum Hamiltonian' series of Pearson (1980b, 1982) for the magnetisation

$$
M=\sum_{n=0}^{15} m_{n} x^{n}+\mathrm{O}\left(x^{16}\right)
$$

the susceptibility

$$
\chi / x^{2}=\sum_{n=0}^{13} \chi_{n} x^{n}+\mathrm{O}\left(x^{14}\right)
$$

and the ground-state energy

$$
\varepsilon_{0}=\sum_{n=0}^{15} e_{n} x^{n}+\mathrm{O}\left(x^{16}\right)
$$

which have $x_{c}=1$ (x is a temperature-like variable). We take two derivatives of the last (ε_{0}) series to obtain a series for C_{v}.

The method introduced by Adler et al (1982a) involves transforming a series in the variable t with leading critical behaviour of the form

$$
\begin{equation*}
f(t) \approx \operatorname{constant}\left(t_{\mathrm{c}}-t\right)^{-h}\left[1+a_{f}\left(t_{\mathrm{c}}-t\right)^{\Delta_{1}}+\ldots\right] \tag{2}
\end{equation*}
$$

to an expansion in powers of $y=1-\left(1-t / t_{c}\right)^{\Delta}$ where $y_{c}=y\left(t_{c}\right)=1$ (a restricted form of this transformation with $\Delta=\Delta_{1}$ was studied by Roskies (1981)). The function

$$
F_{\Delta}(y)=f(t(y)) \approx \text { constant } t_{\mathrm{c}}^{-h}(1-y)^{-h / \Delta}\left[1+a_{f} t_{\mathrm{c}}^{\Delta_{1}}(1-y)^{\Delta_{1} / \Delta}+\ldots\right]
$$

is studied for various input values of Δ, using the biased Dlog Padé method. (An exact t_{c} value is important although this analysis is possible when t_{c} is unknown (Adler et al 1982b).) Different Padé approximants to the function

$$
h_{\text {out }}(\Delta)=\left\{\Delta(1-y)\left[\mathrm{d}\left(\ln F_{\Delta}(y)\right) / \mathrm{d} y\right]\right\}_{y=1}
$$

define a family of $h=h_{\text {out }}(\Delta)$ curves in the (Δ, h) plane. When the input $\Delta=1$, evaluation of $h_{\text {out }}(\Delta)$ is equivalent to the usual Dlog Padé, and the confluent term in equation (2) may introduce systematic errors in the $h_{\text {out }}$ values, but in the case that the input Δ is close to the correct Δ_{1}, the influence of the confluent term is to change the relative slopes of different $h_{\text {out }}(\Delta)$ curves (see Adler et al 1982a for details). Ideally, $h_{\text {out }}(\Delta)$ curves should intersect at the correct (Δ_{1}, h), however due to other finite series effects, one usually obtains a region of convergence (with a large number of intersections) of different $h_{\text {out }}(\Delta)$ curves (see Adler et al 1982a, b for examples and further discussion).

In figures 2 and 3 we present the results for the magnetisation series in the usual (Enting 1980, 1982) and 'quantum Hamiltonian' (Pearson 1980b, 1982) cases, respectively. The different $-\beta(\Delta)$ curves in figures 2 and 3 were obtained by evaluating nine central Padé approximants to each series. In both cases we observe clear regions of 'convergence' of different $-\beta(\Delta)$ curves, delineated by broken-line boxes. Critical exponent estimates from the usual (figure 2) and Hamiltonian (figure 3) magnetisation series are

$$
\begin{array}{lll}
\beta=0.1110 \pm 0.0007 & \text { and } & \Delta_{1}=0.63 \pm 0.19 \\
\beta=0.1111 \pm 0.0006 & \text { and } & \Delta_{1}=0.54 \pm 0.14
\end{array}
$$

respectively. Our β values are in excellent agreement with the conjectured $\beta=\frac{1}{9}=$ $0.11111 \ldots$.. Inspection of figures 2 and 3 shows that input $\Delta=1$ corresponds to $\beta \leqslant 0.110$, thus correct treatment of the leading confluent term removes a small systematic deviation of β values. We shall discuss Δ_{1} values below.

In both figures 2 and 3 there is the second region of convergence of $-\beta(\Delta)$ curves at $\Delta \sim 1$. This structure may be attributed to the analytic ($\Delta_{1} \equiv 1$) correction term (b in equation (1)) or to higher non-analytic terms. In either case, presence of such an additional confluent term of non-negligible amplitude may introduce residual systematic errors in estimates from the first regions of convergence. In order to understand the origin of the second convergence region, and to study its possible influence on β (and Δ_{1}) estimates, we used a method suggested by Aharony (1982). This method involves analysing the F_{Δ} series derived from $f /\left[1+b\left(t_{c}-t\right)\right]$ with varying input b values. The effect of this division is to change the amplitude of the leading analytic term (equation (1)). A scan of different input b values shows that while the first

Figure 2. $-\beta(\Delta)$ curves for the M series of Enting $(1980,1982)$ obtained using $[15,19]$, [16, 18], [17, 17], [18, 16], [19, 15], [15, 18], [16, 17], [17, 16] and [18, 15] Padé approximants.

Figure 3. $-\boldsymbol{\beta}(\Delta)$ curves for the \boldsymbol{M} series of Pearson (1980b, 1982) obtained using [5, 9], $[6,8],[7,7],[8,6],[9,5],[5,8],[6,7],[7,6]$ and $[8,5]$ Padé approximants.
convergence region is not appreciably influenced, both the position and the structure of the second region depend strongly on the input b value. We did not succeed in finding b values such that the second region disappears, but using the present method and a different method (also mentioned in Adler et al (1982a) as an extension of the method of Adler et al (1981) and not discussed here in detail because the method which we consider here usually gives more stable results) we were able to estimate (for both M series) that the order of magnitude of $b_{M} \sim-(0.1 \div 0.2)$. As an illustration, we present the $-\beta(\Delta)$ curves obtained for the Hamiltonian $M /\left[1+b\left(t_{\mathrm{c}}-t\right)\right]$ series with input $b=-0.1$ in figure 4 . One clearly observes the change in the position and the structure of the second region (cf figure 3), while the first convergence region is only slightly changed, the new ranges of β and Δ_{1} values being

$$
\beta=0.1113 \pm 0.0012 \quad \text { and } \quad \Delta_{1}=0.54 \pm 0.12
$$

In figures 5 and 6 we present the result for the E_{s} series (derived from the Z series of Enting (1980, 1982)) and for the Hamiltonian C_{v} series (derived from the ε_{0} series of Pearson (1980b, 1982)), respectively. The α and Δ_{1} estimates from the regions of convergence of different $\alpha(\Delta)-1$ curves (in the E_{s} case) and $\alpha(\Delta)$ curves (in the C_{v} case), which are enclosed in the broken-line boxes of figures 5 and 6 , are (for E_{s} and C_{v} series, respectively)

$$
\begin{array}{lll}
\alpha=0.348 \pm 0.008 & \text { and } & \Delta_{1}=0.56 \pm 0.14 \\
\alpha=0.331 \pm 0.009 & \text { and } & \Delta_{1}=0.65 \pm 0.12 \tag{4}
\end{array}
$$

The second convergence region at $\Delta \sim 1$ in the E_{s} case (figure 5) and some structure at $\Delta \sim 1$ in the C_{v} case (figure 6) are again due to the analytic b term (equation (1)).

Figure 4. $-\beta(\Delta)$ curves obtained from the series of $M /\left[1+b\left(x_{\mathrm{c}}-x\right)\right]$, with $b=-0.1$. The M series is that studied in figure 3.

Figure 5. $\alpha(\Delta)-1$ curves for the E_{s} series (derived from Z series of Enting $(1980,1982)$) obtained using [15, 19], [16, 18], [17, 17], [18, 16], [19, 15], [15, 18], [16, 17], [17, 16] and [18,15] Padé approximants.

Figure 6. $\alpha(\Delta)$ curves for the C_{\vee} series (derived from the ε_{0} series of Pearson (1980b, 1982)) obtained using [4, 8], [5, 7], [6, 6], [7, 5], [8, 4], [4, 7], [5, 6], [6, 5] and [7, 4] Padé approximants.

We have verified this with the same method as for the M-series case, but the situation here is less clear, and we did not determine the order of magnitude of $b_{E_{s}}$ or $b_{C_{v}}$. The first convergence region is rather stable with respect to changing the amplitude of the analytic term.

The conjectured α value is $\alpha=\frac{1}{3}=0.3333 \ldots$, and is apparently outside the range of equation (3). It must be stressed, however, that our error estimates based on the 'boxes' enclosing the convergence regions are rather subjective, and overestimation of the accuracy of the results, due to their apparent stability, is possible. Typical α values at $\Delta \sim 1$ (see figures 5 and 6) are $\alpha \approx 0.31$ for the C_{v} series and $\alpha \approx 0.37$ for the E_{s} series (the last α value is a typical one obtained in the usual Pade analysis (see Enting 1980)). Thus a correct treatment of the leading confluent term reduces the 'discrepancy' between the series α estimates and the conjectured value by an order of magnitude. There still remains a possibility that the residual deviation of the central values of equations (3) and (4) from the conjectured $\alpha=\frac{1}{3}$ is due to a systematic error induced by higher correction terms.

We also analysed the (relatively short) Hamiltonian χ series of Pearson (1980b, 1982). In this case we found evidence for an analytic (b of equation (1)) term of large amplitude. The first convergence region is difficult to locate (we do not present the details of the analysis here). We were able to determine for γ and Δ_{1} the following rather wide ranges:

$$
\gamma=1.449 \pm 0.027 \quad \text { and } \quad \Delta_{1}=0.53 \pm 0.18
$$

Note that the conjectured γ value is $\gamma=\frac{13}{9}=1.4444 \ldots$, and that typical γ values obtained from the usual Padé analysis are $\gamma \geq 1.49$.

Our overall Δ_{1} estimate is an average of the ranges quoted above of Δ_{1} values as well as of the results of the analysis for different series when the analytic term of varying amplitude is divided out. We propose

$$
\Delta_{1}=0.57 \pm 0.13
$$

Assuming the conjectured $y_{T}=\frac{6}{5}$, we can obtain an estimate of the absolute value of the leading irrelevant rg eigenvalue

$$
\begin{equation*}
y^{\prime}=\Delta_{1} y_{\mathrm{T}}=0.68 \pm 0.16 \tag{5}
\end{equation*}
$$

Estimates of y^{\prime} have been made in several real-space rg studies of the $q=3$ Potts model (as a special case of the Blume-Emery-Griffiths model by Berker and Wortis (1976), ($y^{\prime}=0.52$), Burkhardt et al (1976), ($y^{\prime}=0.46$) and Adler et al (1978), ($y^{\prime}=0.6$) and as a Potts lattice gas with vacancies by Rebbi and Swendson (1980), $\left(y^{\prime}=0.7\right)$). Nienhuis (1982) has recently provided analytic support for Burkhardt's (1980) conjecture that $y^{\prime}=\frac{4}{5}=0.8$ (at $q=3$). The first term of an expansion in powers of $\varepsilon=(4-q)^{1 / 2}$ (Cardy et al 1980) gives $y^{\prime} \approx 2 / \pi \approx 0.64$. Finally, Pearson (1980a) has conjectured that $y^{\prime}=\frac{2}{3} \approx 0.67$. Our range of y^{\prime} includes most of these predictions, though Pearson's (1980a) conjecture and the Monte Carlo rg results (Rebbi and Swendsen 1980) are the closest to our central value.

We are unaware of experimental results available for comparison with y^{\prime} or Δ_{1} but the results of Bretz (1977) for helium adsorbed on graphite which is in the $q=3$ Potts universality class suggest $\alpha=0.35 \pm 0.02$. It is interesting to speculate whether a Δ_{1} value could be obtained from such an experiment (as has been done for superfluid helium (Ahlers 1980)) and whether an analysis of the data with the scaling form of equation (1) would alter the α value, as occurs in the series analysis.

In summary, we have found that the inclusion of a correction to scaling term with the exponent Δ_{1} consistent with the results of several rg calculations, leads to series analysis values of the critical exponents α, β and γ which agree with the conjectured 'exact' values.

We thank I Enting and R Pearson for their kind communication of further terms in their series previous to publication. We enjoyed discussions with A Aharony, C Domb and M Moshe on various aspects of these calculations. One of us (JA) acknowledges the support of the Lady Davis Fellowship Foundation.

References

Adler J, Aharony A and Oitmaa J 1978 J. Phys. A: Math. Gen. 11963
Adler J, Moshe M and Privman V 1981 J. Phys. A: Math. Gen. 14 L363

- 1982a Phys. Rev. B in press
- 1982b Phys. Rev. B in press
-_ 1982c Percolation Structures and Processes, Ann. Israel Phys. Soc. to appear
Adler J and Privman V 1981 J. Phys. A: Math. Gen. 14 L463
Aharony A 1980 Phys. Rev. B 22400
- 1982 private communication

Aharony A and Fisher M E 1980 Phys. Rev. Lett. 45679
Ahlers G 1980 Rev. Mod. Phys. 52489

Letter to the Editor

Baxter R J 1973 J. Phys. C: Solid State Phys. 6 L445
—— 1980 J. Phys. A: Math. Gen. 13 L61
Baxter R J, Temperley H N V and Ashley S E 1978 Proc. R. Soc. A 358535
Berker A N and Wortis M 1976 Phys. Rev. B 144946
Bretz M 1977 Phys. Rev. Lett. 38501
Burkhardt T W 1980 Z. Phys. B 39159
Burkhardt T W, Knops H J F and den Nijs M P M 1976 J. Phys. A: Math. Gen. 9 L179
Cardy J L, Nauenberg M and Scalapino D J 1980 Phys. Rev. B 222560
Chen J H, Fisher M E and Nickel B G 1982 Phys. Rev. Lett. 48630
Dasgupta C 1977 Phys. Rev. B 153460
Elitzur S, Pearson R B and Shigemitzu J 1979 Phys. Rev. D 193698
Enting I G 1980 J. Phys. A: Math. Gen. 13 L133

- 1982 private communication

Hintermann A, Kunz H and Wu F 1978 J. Stat. Phys. 19623
Houghton A, Reeve J S and Wallace D J 1978 Phys. Rev. B 172956
Nauenberg M and Scalapino D J 1980 Phys. Rev. Lett. 44837
Nienhuis B 1982 J. Phys. A: Math. Gen. 15199
Nienhuis B, Riedel E K and Schick M 1980 J. Phys. A: Math. Gen. 13 L189
den Nijs M P M 1979 J. Phys. A: Math. Gen. 121857
Pearson R B 1980a Phys. Rev. B 222579

- 1980b Phys. Rev. B 223465
- 1982 private communication

Potts R B 1952 Proc. Camb. Phil. Soc. 48106
Rebbi C and Swendsen R H 1980 Phys. Rev. B 214094
Roskies R 1981 Phys. Rev. B 245305
Straley J P and Fisher M E 1973 J. Phys. A: Math. Gen. 61310
Wegner F J 1972 Phys. Rev. B 54529
Wu F Y 1982 Rev. Mod. Phys. 15235
Zinn-Justin J 1981 J. Physique 42183
Zwanzig R and Ramshaw J D 1977 J. Phys. A: Math. Gen. 1065

