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Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel 

Received 22 April 1982 

Abstract. Several extant series for the d = 2,4 = 3 Potts model are analysed with a method 
suggested recently that explicitly accounts for the effect of confluent corrections to scaling. 
Excellent agreement with the conjectured exponents for this model is found, as well as 
confirmation of renormalisationgroup estimates of the sub-leading eigenvalue. 

The three-state (4 = 3) Potts model (for a review, see Wu 1982) with Hamiltonian 

-PX= K c as,, 
(ii) 

where i and j are neighbouring sites with variables Si and Si which can each take one 
of three values, is known (Baxter 1973, Baxter et a1 1978) to have a continuous 
(second-order) phase transition at d = 2. The critical exponents are not known exactly, 
but plausible conjectures for the thermal eigenvalue y?'" = 9 (den Nijs 1979) and 
the magnetic eigenvalue ygS3) = (Nienhuis et a1 1980, Pearson 1980a) of the d = 2 
Potts model lead to exponent predictions. For the exponents of the specific heat C, 
(-IT- T,I-"), magnetisation it4 (-IT- Tcls) and susceptibility ,y (-IT- TJ') these 
are CY = 2 - d/yT = 5, p = (d - yH)/yT = $ and y = (2yH - d)/yT = 7, respectively. 

Confirmation of these conjectures from the results of numerical calculations is, in 
general, tolerable but not outstanding. In particular, the p estimates listed by Wu 
(1982) all fall below 0.109. The 'best' (closest to the conjectured) results for CY are 
from the Kadanoff variational renormalisation group (RG) calculations (CY = 0.3365 
(Burkhardt et al' 1976) and CY = 0.326 (Dasgupta 1977)), and from some Hamiltonian 
series for the Z3 model (CY = 0.320* 0.004 (Elitzur et a1 1979)). The usual (partition 
function) series results for CY are either very bad (Zwanzig and Ramshaw 1977) or 
exhibit slow convergence (Enting 1980). 

Recently, there has been considerable interest in series analysis methods which 
explicitly account for the influence of the leading confluent singularities on critical 
exponent estimates. Much attention has been paid to the d = 3 king (or 4 = 2 Potts) 
model, where correct treatment of the leading non-analytic confluent term has been 
shown to remove discrepancies between series and RG results (Roskies 1981, Zinn- 
Justin 1981, Chen et a1 1982, Adler et a1 1982b, and references therein). 

If we consider a (4, d )  plane of Potts models (figure 1) with q values on the abscissa 
and d values on the ordinate we may look along the line of fixed 4 = 2 (Ising model) 
and varying d, and observe that the next to leading eigenvalue, which is marginal at 
d = 4 (causing logarithmic corrections, Wegner 1972), governs the non-analytic 
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Figure 1. The (q, d )  plane of Potts models. L indicates leading logarithmic corrections 
to scaling, NAC indicates leading non-analytic power law confluent corrections and AC 
indicates leading analytic confluent corrections. References for d = 2 and all q = 2 are in 
the text, and the q = 1 results are quoted from Houghton et a1 (1978), Aharony (1980), 
and Adler et a1 (1982~) .  

confluent corrections to scaling at d = 3 (Wegner 1972). In the d = 2 Ising model the 
leading correction to scaling term is analytic and is attributed to nonlinear scaling 
fields (Aharony and Fisher 1980). 

A similar picture arises if we look along the line of fixed d = 2. The q = 4 Potts 
model (for which agreement between the YT and YH conjectures and the results of 
numerical calculation is even worse than for q = 3 (Wu 1982)) has logarithmic correc- 
tions at d = 2 caused by the marginality of the next to leading eigenvalue y '  (Nauenberg 
and Scalapino 1980, Rebbi and Swendsen 1980). These explain the slow convergence 
of both Monte Carlo RG and series work for this model. At q = 3 this next to leading 
eigenvalue causes non-analytic corrections to scaling and the critical behaviour is of 
the form (considering C, as an example) 

(1) 
where a, is the coefficient of the non-analytic correction to scaling (Al = y'/yT is 
universal (Wegner 1972)) and b, is the coefficient of the first analytic term which is 
always present. The case of 4 = 2 (Ising model) was mentioned above and in the case 
q = 1 (bond percolation) non-analytic corrections to scaling are again present (Al > 1, 
Adler et af 1982a, and references therein). Here again proper treatment of these 
corrections removes discrepancies between conjectures and series results and thus it 
seems reasonable to expect that series for the q = 3 Potts model should be analysed 
with the assumed critical behaviour of the type of equation (1). (We note that 
logarithmic corrections should not occur for any q # 4 at d = 2 (Adler and Privman 
1981).) 

Various methods of evaluating AI from series expansions have been developed 
(see the references listed above for the d = 3 Ising model). In the present letter, we 
shall apply the method introduced by Adler et a1 (1982a) to several series for the 
q = 3 Potts model, and shall show that improved exponent estimates are obtained, as 
well as results for y '  that are in agreement with the RG predictions. 

C, - constant] T - TJ" (1 + a,l T - T , I * ~  + b,l T - T,I + . . .) 
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We restrict our attention to the case of the square lattice (where T, is exactly 
known from duality arguments (Potts 1952, Hintermann et a1 1978)). We consider 
the low-temperature series of Enting (1980, 1982) for the magnetisation 

35 

k =4 
M = l -  b k U k + O ( U 3 6 )  

and the partition function 
35 

k =4 
Z = I +  a k u k + ~ ( U 3 6 ) ,  

where u =e-: and U, = (&- 1)/2. The second series is transformed to a series for 
E, = (1 - 1/43) - u(d In Z/du), where E, has exponent 1 -a. We also consider the 
'quantum Hamiltonian' series of Pearson (1980b, 1982) for the magnetisation 

15 

n = O  
M =  m , , x " + ~ ( x ' ~ ) ,  

the susceptibility 
1 3  

x / x 2 =  X n X n + ~ ( X 1 4 )  
n = O  

and the ground-state energy 
15 

eo= 1 enxn+O(x16) 
n =O 

which have x c =  1 (x is a temperature-like variable). We take two derivatives of the 
last (eO) series to obtain a series for C,. 

The method introduced by Adler et a1 (1982a) involves transforming a series in 
the variable t with leading critical behaviour of the form 

(2) 
to an expansion in powers of y = 1 - (1 - f/tc)' where y, = y(tc) = 1 (a restricted form 
of this transformation with A = Al was studied by Roskies (1981)). The function 

f ( t )  = constant(t, - tlPh[l + q ( t C  - t)"' + . . .I 

~A(y)=f(t(y))=constant t , h ( l - y ) - h ' A [ l + ~ ~ t ~ ~ ( l - y ) A ~ ' A + .  . .I 
is studied for various input values of A, using the biased Dlog Pad6 method. (An exact 
t, value is important although this analysis is possible when t, is unknown (Adler et 
a1 1982b).) Different Pad6 approximants to the function 

h o u t ( A )  = {A(1 -y)[d(ln F~(y) ) /d j ' l Iy=~ 

define a family of h = hout(A) curves in the (A, h )  plane. When the input A = 1, 
evaluation of hOut(A) is equivalent to the usual Dlog Pad6, and the confluent term in 
equation (2) may introduce systematic errors in the h,,, values, but in the case that 
the input A is close to the correct AI, the influence of the confluent term is to change 
the relative slopes of different hOut(A) curves (see Adler et a1 1982a for details). 
Ideally, hOut(A) curves should intersect at the correct (Al, h) ,  however due to other 
finite series effects, one usually obtains a region of convergence (with a large number 
of intersections) of different hOut(A) curves (see Adler et a1 1982a, b for examples and 
further discussion). 
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In figures 2 and 3 we present the results for the magnetisation series in the usual 
(Enting 1980,1982) and ‘quantum Hamiltonian’ (Pearson 1980b, 1982) cases, respec- 
tively. The different +(A) curves in figures 2 and 3 were obtained by evaluating 
nine central PadC approximants to each series. In both cases we observe clear regions 
of ‘convergence’ of different -p (A) curves, delineated by broken-line boxes. Critical 
exponent estimates from the usual (figure 2) and Hamiltonian (figure 3) magnetisation 
series are 

p =0.1110~0.0007 and A1 = 0.63 * 0.19 

p =0.1111*0.0006 and A1 =0.54*0.14 

respectively. Our p values are in excellent agreement with the conjectured p = 6 = 
0.11111 , . ,. Inspection of figures 2 and 3 shows that input A = 1 corresponds to 
/3 ~ 0 . 1 1 0 ,  thus correct treatment of the leading confluent term removes a small 
systematic deviation of p values. We shall discuss AI values below. 

In both figures 2 and 3 there is the second region of convergence of +(A) curves 
at A - 1. This structure may be attributed to the analytic (Al = 1) correction term (b 
in equation (1)) or to higher non-analytic terms. In either case, presence of such an 
additional confluent term of non-negligible amplitude may introduce residual system- 
atic errors in estimates from the first regions of convergence. In order to understand 
the origin of the second convergence region, and to study its possible influence on p 
(and A1) estimates, we used a method suggested by Aharony (1982). This method 
involves analysing the FA series derived from f/[1+ b( t , - t ) ]  with varying input b 
values. The effect of this division is to change the amplitude of the leading analytic 
term (equation (1)). A scan of different input b values shows that while the first 

-0.1095 i 
-0.1100 - 

-0.1105 - 

-0.1110 - 

-0,111 5 - 

-0.11201 1 1 I I 1 I 

0.4 0.6 0.8 1.0 
A 

Figure 2. +?(A) curves for the M series of Enting (1980, 1982) obtained using [15, 191, 
[la, 181, [17, 171, [18, 161, [19, 151, [15, 181, [16, 171, [17, 161 and [18, 151 PadC 
approximants. 
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Figure 3. -+(A) curves for the M series of Pearson (1980b, 1982) obtained using [5,91, 
[6,8], [7,7], [S, 61, [9, 51, [5 ,  81, [6,7], [7, 61 and [8, 51 Pad6 approximants. 

convergence region is not appreciably influenced, both the position and the structure 
of the second region depend strongly on the input b value. We did not succeed in 
finding b values such that the second region disappears, but using the present method 
and a different method (also mentioned in Adler et a1 (1982a) as an extension of the 
method of Adler et a1 (1981) and not discussed here in detail because the method 
which we consider here usually gives more stable results) we were able to estimate 
(for both M series) that the order of magnitude of bM - -(0.1 t0.2). As an illustration, 
we present the -p (A) curves obtained for the Hamiltonian M/[l+ b(t ,-  r ) ]  series with 
input b = -0.1 in figure 4. One clearly observes the change in the position and the 
structure of the second region (cf figure 3), while the first convergence region is only 
slightly changed, the new ranges of 6 and AI values being 

~=0.1113*0.0012 and A1 =0.54*0.12. 

In figures 5 and 6 we present the result for the E, series (derived from the 2 series 
of Enting (1980, 1982)) and for the Hamiltonian C, series (derived from the c0 series 
of Pearson (1980b, 1982)), respectively. The cy and AI estimates from the regions of 
convergence of different a ( A ) -  1 curves (in the E, case) and a(A) curves (in the C., 
case), which are enclosed in the broken-line boxes of figures 5 and 6, are (for E, and 
C, series, respectively) 

a = 0.348 f 0.008 and A1 = 0.56* 0.14 (3) 

a = 0.331 * 0.009 and A1 =0.65*0.12. (4) 

The second convergence region at A - 1 in the E, case (figure 5 )  and some structure 
at A -  1 in the C, case (figure 6) are again due to the analytic b term (equation (1)). 
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Figure 4. -P(A) curves obtained from the series of M/[1 +b(x,-x)], with b = -0.1. The 
M series is that studied in figure 3. 

-0.62 

-0.63 

-0.64 
I - 
a - 
a 

-0.65 

-0.66 

I I I I 

I I I I 
0.4 0.6 0.8 1.0 

A 

Figure 5. a(A) - 1 curves for the E, series (derived from 2 series of Enting (1980, 1982)) 
obtained using [15, 191, [16, 181, [17, 171, [18, 161, [19, 151, [15, 181, [16, 171, [17, 161 
and [18, 151 Pad6 approximants. 
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Figure 6. a(A) curves for the C, series (derived from the E,, series of Pearson (1980b, 
1982)) obtained using [4, 81, [5, 71, 16, 61, [7, 51, 18, 41, [4, 71, 15, 61, 16, 51 and [7, 41 
Pade approximants. 

We have verified this with the same method as for the M-series case, but the situation 
here is less clear, and we did not determine the order of magnitude of b E s  or b~,,. The 
first convergence region is rather stable with respect to changing the amplitude of the 
analytic term. 

The conjectured a value is a = $= 0.3333 . . ., and is apparently outside the range 
of equation (3). It must be stressed, however, that our error estimates based on the 
‘boxes’ enclosing the convergence regions are rather subjective, and overestimation 
of the accuracy of the results, due to their apparent stability, is possible. Typical a 
values at A - 1 (see figures 5 and 6) are a = 0.31 for the C, series and a = 0.37 for 
the E, series (the last a value is a typical one obtained in the usual Pad6 analysis 
(see Enting 1980)). Thus a correct treatment of the leading confluent term reduces 
the ‘discrepancy’ between the series a estimates and the conjectured value by an 
order of magnitude. There still remains a possibility that the residual deviation of 
the central values of equations (3) and (4) from the conjectured a = $  is due to a 
systematic error induced by higher correction terms. 

We also analysed the (relatively short) Hamiltonian ,y series of Pearson (1980b, 
1982). In this case we found evidence for an analytic (b of equation (1)) term of large 
amplitude. The first convergence region is difficult to locate (we do not present the 
details of the analysis here). We were able to determine for y and AI the following 
rather wide ranges: 

y = 1.449*0.027 and Ai =0.53*0.18. 
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Note that the conjectured y value is y = = 1.4444 , . ., and that typical y values 
obtained from the usual Pad6 analysis are y z 1.49. 

Our overall Al estimate is an average of the ranges quoted above of AI values as 
well as of the results of the analysis for different series when the analytic term of 
varying amplitude is divided out. We propose 

AI = 0.57 f 0.13. 

Assuming the conjectured yT = 4, we can obtain an estimate of the absolute value of 
the leading irrelevant RG eigenvalue 

y ’ = A l y T =  0.68k0.16. ( 5 )  

Estimates of y‘ have been made in several real-space RG studies of the 4 = 3 Potts 
model (as a special case of the Blume-Emery-Griffiths model by Berker and Wortis 
(1976), (y’=  0.52), Burkhardt etal (1976), (y‘=  0.46) and Adler etal (1978), (y’=  0.6) 
and as a Potts lattice gas with vacancies by Rebbi and Swendson (1980), ( y ’ =  0.7)). 
Nienhuis (1982) has recently provided analytic support for Burkhardt’s (1980) conjec- 
ture that y‘ = 4 = 0.8 (at 4 = 3). The first term of an expansion in powers of E = (4 -4)’” 
(Cardy et a1 1980) gives y’=2/1r ~ 0 . 6 4 .  Finally, Pearson (1980a) has conjectured 
that y’  = $= 0.67. Our range of y’ includes most of these predictions, though Pearson’s 
(1980a) conjecture and the Monte Carlo RG results (Rebbi and Swendsen 1980) are 
the closest to our central value. 

We are unaware of experimental results available for comparison with y’ or AI 
but the results of Bretz (1977) for helium adsorbed on graphite which is in the 4 = 3 
Potts universality class suggest a = 0.35 f 0.02. It is interesting to speculate whether 
a AI value could be obtained from such an experiment (as has been done for superfluid 
helium (Ahlers 1980)) and whether an analysis of the data with the scaling form of 
equation (1) would alter the a value, as occurs in the series analysis. 

In summary, we have found that the inclusion of a correction to scaling term 
with the exponent AI consistent with the results of several RG calculations, leads to 
series analysis values of the critical exponents a, f l  and y which agree with the 
conjectured ‘exact’ values. 

We thank I Enting and R Pearson for their kind communication of further terms in 
their series previous to publication. We enjoyed discussions with A Aharony, C Domb 
and M Moshe on various aspects of these calculations. One of us (JA) acknowledges 
the support of the Lady Davis Fellowship Foundation. 
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